MAPK Phosphatase 5 Expression Induced by Influenza Virus Negatively Regulates IRF3 Activation and Type I Interferon Response

Yongliang Zhang^{1*}, Sharmy J James¹, Huipeng Jiao¹, Hong-Ying Teh¹

¹ Department of Microbiology, National University of Singapore

Background/Objective

Type I interferons (IFNs) are essential for host defence against viral infection such as influenza A virus infection which is a major threat to public health globally. Type I IFNs are the major targets of viral immune evasion strategies. The interferon regulated factor 3 (IRF3) is known as a master regulator of type I IFNs. MAP kinase phosphatases (MKPs) has been implicated a role in regulation of type I interferon expression. However, if MKPs regulate IRF3-type I interferon is unclear. In this study, we investigated the regulatory role of MKP5 in innate immune response, particularly in the IRF3-type I interferon axis, to influenza infection.

Method

Mice deficient in MKP5 were infected with H1N1 and H3N2 influenza viruses to examine the function of MKP5 in immune response to influenza infection. Wild-type and MKP5 knockout bone marrow-derived macrophages and dendritic cells were generated to investigate the regulatory mechanism of this protein in IRF3-type I interferon signaling upon influenza infection.

Result

Mice deficient in MKP5 were resistance to PR8 (H1N1) influenza virus infection compared with wild-type mice, which is associated with increased IRF3 activation and type I IFN expression in the lung. Mechanistically, MKP5 directly interacts with and dephosphorylates IRF3 at Ser396 and Ser386 residues to inhibit IRF3 activation and type I IFN expression in response to virus infection. Interestingly, the non-structure protein 1 (NS1) from H1N1 and H3N2 influenza viruses induces the expression of MKP5. However, the inhibition of MKP5 on type I interferon expression is independent of NS1.

Conclusion

MKP5 is a novel negative regulator of IRF3-type I IFN system. Our study for the first time reveals a critical function of a dual specificity phosphatase in the negative regulation of IRF3 activity and demonstrates a novel mechanism by which influenza inhibit type I interferon response in host through MKP5.